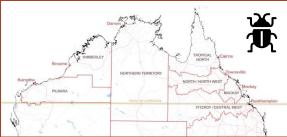


Grain storage in northern Australia: Pest and resistance diagnostics and its implications for industry

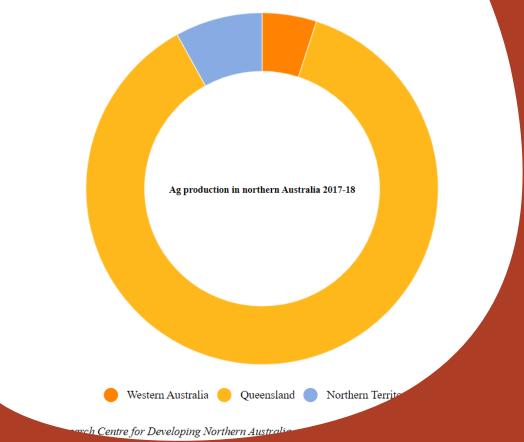
Dr Raj Jagadeesan Senior Research Scientist (Entomology) Postharvest Commodity Protection Department of Agriculture and Fisheries (DAF), Queensland 4102

What's new in northern Australia?


- Broad acre cropping expands
 - Maize, Sorghum, Mung beans, and Soybean

- On-farm storage is gaining momentum
 - Promoting regional grain value chain (partial functioning of TSV port)

- Tropical humid climate and lack of data
 - constitutes an impediment to long-term investments



ensland dominates agricultural production across the three jurisdictions tha hern Australia, with Western Australia accounting for the least.

Queensland dominates in Ag Investments

- Crop diversification
- On farm storage structures
- Maximising grain supply chain efficiency

Cooperative Research Centre for the Development of Northern Australia (CRCNA)

"Integrated management to ensure market access for northern Australian grain"

- Establishing pest and resistance profiles (QLD, NT and WA)
- Identifying suitable chemical and non-chemical control strategies for farms
- **Outreaching key findings** of the project to the industry for adoption

Grain sampling survey

- >100-grain samples collected over northern Australia over 30 storage sites
 - Northern QLD: 18 storage sites (Townsville and MacKay)
 - Two major seasons (Feb-May; Sep-Dec)
 - Northern Territory: 6 sites (Daly and Arnhem)
 - July-Aug
 - Northern Western Australia: 6 sites (Broome and Kununurra)
 - July-Aug

•••••••

daf.gld.gov.au

• 100 field insect populations of multiple insect species are maintained in the laboratory

Key stored grain insect pests

Red flour beetle (RFB)

Lesser grain borer (LGB)

Rice Weevil (RW)

Maize Weevil (MW)

Rusty Grain Beetle (RGB) Saw-toothed Grain Beetle (SGB)

••••••

Bruchids (BDS)

Booklice (BL)

Raj Jagadeesan-QDAF-ASGC-13-15th March 2023

Pest profile

Northern Queensland

- 98.5 % of grain samples infested and contained >2 live insect pests
- Red Flour Beetle (RFB) > Rusty Grain Beetle (RGB) > Rice Weevil (RW)
- Maize Weevil (MW), Bruchids (BDS), and Lesser Grain Borer (LGB)

Northern Territory

- RFB, LGB and RGB
- BDS

Northern Western Australia

- RFB infestation was found in all the grain samples
- RFB > RGB> Saw-toothed Grain Beetles (SGB)

Resistance profiling

- Susceptibility to fumigant, Phosphine (PH₃)
 - Northern Queensland: **26 insect populations** strongly resistant
 - 16 RFB; 8 RGB, 1 RW, and 1 LGB
 - Northern Western Australia and Northern Territory: 8-9 strongly resistant RFBs
- Susceptibility to grain protectant (conserve on-farm): Spinosad 120g/L + Chlorpyriphos-methyl 500g/L + S-methoprene 30g/L
 - No tolerance/ resistance reported in any of the five species tested
- Susceptibility to Diatomaceous Earth (DE)
 - All RFBs showed considerable levels of resistance to DE.

Percent resistance to fumigant, phosphine in key grain insect pests collected from Townsville

	Insect species	Number of population s tested	Phenotype diagnosed				
			Susceptible	Weakly resistant ¹	Strongly Resistant ²	Weak Resistance (%) (Range ³)	Strong Resistance (%) (Range ³)
K	LGB	5	0	4	1	53-99	59
	RFB	29	0	13	16	1-88	1-58
	RGB	11	0	3	8	51-100	1-74
×	RW	8	0	7	1	1-84	0-1
R	MW	1	0	1	0	75	0

Lesser Grain Borer (LGB), *Rhyzopertha dominica*, Red Flour Beetle (RFB), *Tribolium castaneum*, Rusty Grain Beetle (RGB), *Cryptolestes ferrugineus* Rice Weevil (RW), *Sitophilus oryzae*

¹Insects were exposed to phosphine at 0.03 mg l⁻¹ over 20 hrs; ² Insects were exposed to phosphine at 0.25 mg l⁻¹ over 20 and 48 hrs exposure periods for RFB, and LGB, respectively. For RGB, test insects have been exposed to 1mg l⁻¹ over 168 hrs.; ³Values within the parenthesis represent minimum and maximum percent resistance values recorded among the multiple populations tested

daf.qld.gov.au

Effectiveness of grain protectant, Conserve On-farm (Spinosad 120 g/L + Chlorpyriphos-methyl 500 g/L + s Methoprene 30 g/L) at 35°C and 70% RH.

Region	Pest species tested*	Mortality	
		Adults ¹	Progeny ²
nQLD	LGB	100	100
	RFB	100	100
	RGB	100	100
	RW	100	100
	MW	100	100
NT	LGB	100	100
	RFB	100	100
	SGB	100	100
nWA	RFB	100	100
	SGB	100	100

*Reference insect populations established from healthy insect samples collected from multiple storage sites within each state/region

¹Adult insects two weeks after eclosion were challenged with treated grain and maintained at high temperature (35°C) and humidity (75%) mortality was recorded after 14 days

 2 Effectiveness against immature life stages, eggs, larvae, pupae of parental adults (F1) estimated in comparison to the number of freshly emerged adults in untreated control

Effectiveness of Diatomaceous Earth (DE) in concretes at 35°C and 75% RH

Region	Pest species tested*	Mortality [!]
nQLD	LGB	100
	RFB	54.7 % ± 7.5
	RGB	100
	RW	100
	MW	100
NT	LGB	100
	RFB	59.8 % ± 14.2
	SGB	100
nWA	RFB	94.0% ± 3.1
	SGB	100

*Reference insect populations established from healthy insect samples collected from multiple storage sites within each state/region

¹Adult insects two weeks after eclosion were released into treated concrete surfaces and the set up was placed at high temperature (35°C) and humidity (70%). The mortality in both treated and untreated experiments was recorded after 14 days

Trapping

- Pheromone/bait trapping: Indirect/ Relative sampling
 - Supports direct grain sampling study provides ecological/behavioural clues
 - 6 study sites were selected representing the Burdekin grain supply chain
 - farms, paddy processing site, feed mills, storage sheds near the port, and, pasture land

Trapping results

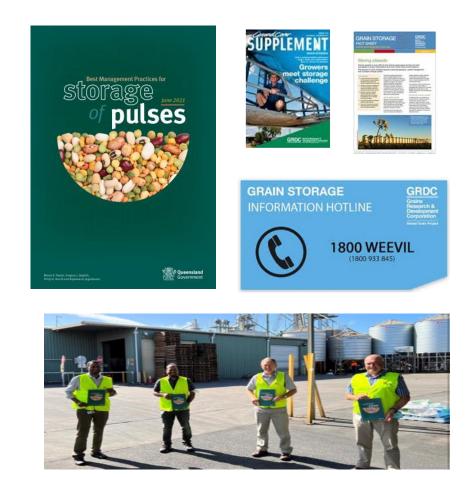
- Lindgren funnel traps (pheromone)
- Dome traps (bait mixture)
- Fortnightly trap catches (over 2 months) recorded for the period until Dec 2022
 - Pheromone traps 6135
 - Baited dome traps 175
 - LGB and RFB are the two most common pest species
- Results from 12 months of trapping
 - "Ecology and Behaviour" of grain pests in this region

Pest species composition and seasonal abundance

(a) Pheromone-baited Dome traps						
Months	LGB	RFB	RW	RGB	MGB	
Oct-22	2	36	7	0	3	
Nov-22	29	80	17	0	1	
(b) Pheromone-baited Lindgren funnel traps						
Months	LGB	RFB	RW	RGB	MGB	
Oct-22	2315	259	33	70	1	
Nov-22	1659	161	43	193	0	
(c) Unbaited Lindgren funnel traps						
Months	LGB	RFB	RW	RGB	MGB	
Oct-22	32	13	3	4	1	
Nov-22	29	21	7	12	0	

••••••

- Dome Vs Lindgren
- Differential species composition in alignment with grain sampling
 - LGB
 - RFB
 - RW
 - RGB


Delivery and Adoption

- Linkage with industry
- Agronomists and private agencies
- Utilizing extension communication platforms
 - Project workshops
 - Field days

••••••

daf.qld.gov.au

- Demonstration trials
- Establish trust and ensure practice change

Raj Jagadeesan, Australian Summer Grain Conference 13-15th March 2023

Where are we now?

Pest profile varies between each region; however, some similarities exist (RFB, RGB)

Diatomaceous earth can be used selectively as surface treatment (e.g. not for RFBs)

Phosphine resistance is substantially high in RFB (76.7%) and RGB (18.6%)

Trapping reflects local regional activity within a supply chain: two way movement of pests

Conserve on-farm: effective against resistant insect pests at tropical environments

The second phase of sampling in – QLD, WA and NT: reveal more results

Raj Jagadeesan, Australian Summer Grain Conference 13-15th March 2023

"

Our research focuses on implementing scientific postharvest pest management practices in farms and other stakeholders and ensure knowledge-based transitioning

...will help achieve storage integrity that ensures farmers can be "price makers' and not "price takers."

Acknowledgement

Australian Government

Department of Industry, Science, Energy and Resources

Raj.jagadeesan@daf.qld.gov.au 07 3708 8546/ 0401957059