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Summary This study reports changes in the concentrations of important health-related bioactive compounds (vita-

min C and ellagic acid) and morphology of wild harvested Kakadu plum fruits that were collected during

three harvest seasons and four maturities. The results showed that fruit weight increased, whereas fruit

length and width changed slightly with the advance in maturity. Vitamin C increased up to 20 folds (from

1.2 to 21.2% dry weight [DW]) from immature to mature stage, whereas ellagic acid decreased approxi-

mately three times (from 6.5 to 2.1% DW). Similar trends were observed over the three harvest seasons

studied. A positive correlation between fruit weight and vitamin C, whereas a negative correlation with

ellagic acid was observed, indicating that maturity plays an important role in contributing to the variation

of ellagic acid and vitamin C. Season also had an effect and showed the influences of rainfall, temperature

and solar exposure on the biosynthesis of vitamin C and ellagic acid.

Keywords Ellagic acid, Kakadu plum, maturity, rain fall, seasonal effect, solar exposure, temperature, Terminalia ferdinandiana Exell, vi-

tamin C, wild harvest.

Introduction

Terminalia ferdinandiana (Exell), commonly known as
Kakadu plum (KP), belongs to the family Combre-
taceae, a native tree of Australia (Brock, 2005; Gor-
man et al., 2020). Fruits of this tree play an important
role in the Australian Aboriginal communities as food
or traditional medicinal ingredient (Lim, 2012).
Recently, KP fruits have been reported to exhibit a
wide range of health-related benefits measured in vitro,
including antimicrobial, antioxidant, anti-inflammatory
and anticancer properties (Tan et al., 2011; Akter
et al., 2019; Chaliha & Sultanbawa, 2019). The func-
tional properties of KP fruits are associated with the
exceptionally high levels of vitamin C of up to 32 g/
100g dry weight (DW) or 5.3 g/100g fresh weight
(FW), ellagic acid (3.1–14.0 g/100g DW), and ellagic
acid–related compounds such as glycosides and poly-
meric ellagitannins (Clifford & Scalbert, 2000;

Konczak et al., 2014). Vitamin C, ellagic acid and its
derivatives have been associated with health-
promoting biological functions, including antioxidant
properties, protecting against free radicals, improve-
ment of the renal activity and inhibiting cancer cell
proliferation (Losso et al., 2004; Ahad et al., 2014;
Mortensen & Lykkesfeldt, 2014).
The Australian Indigenous people have a long history

of harvesting KP fruits from the wild, where wild har-
vest might explain potential inconsistencies in fruit qual-
ity from season to season. Seasonal effects associated
with fluctuations in environmental conditions (e.g., tem-
perature and rainfall) during fruit growth have been
also reported to affect fruit growth and the nutritional
composition of a wide range of crops such as grapes and
berries (Lee & Kader, 2000; Cozzolino et al., 2010; Teix-
eira et al., 2013; Hykkerud et al., 2018).
KP fruit season normally starts from November to

December, ending around June (Gorman et al.,
2019b), where the fruits usually grow from the dry sea-
son through the wet season, particularly in the North-
ern Territory of Australia (Gorman et al., 2019a).
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Differences in climatic conditions among harvest sea-
sons might cause insecurity to the KP Industry and
Indigenous enterprises, as they might be the cause of
variations in the composition and consistency of this
fruit and subsequently its quality. Anecdotally, a large
fluctuation in the concentration of both vitamin C and
ellagic acid has been reported in wild harvested KP
fruits collected from different growing sites, accessions
and even between individual trees at the same location
(Konczak et al., 2014). However, available information
between different seasons and maturities in wild har-
vested fruits of KP is incomplete.

In addition to the variations in the concentration of
bioactive compounds and fruit quality parameters
caused by seasonal effects, fruit maturity also plays an
important role in determining the quality, sensory
attributes and biological functions of plant-based food
products (Kader, 1999; Pinillos et al., 2016; Vieira
et al., 2018; Aubert et al., 2021). Therefore, harvesting
KP fruit at the appropriate maturity is a key factor to
ensure that the fruit fulfils the requirements for opti-
mum compositional levels and to maximise the accu-
mulation of bioactive compounds. This information
could be subsequently used to monitor and predict
postharvest storage and shelf-life to meet the growing
demand for this type of products. Unlike other fruits
that are traditionally collected at the ripe stage to opti-
mise the harvesting conditions and quality, there is a
potential to harvest KP fruits at the time when fruits
reach the highest levels of some of the bioactive com-
pounds to target different markets or food applica-
tions. Therefore, it will be important to better
understand the relationships between fruit maturity
and the accumulation of bioactive compounds during
fruit growth to enable the KP industry and Indigenous
enterprises to develop a standard harvest protocol for
the KP fruit grown in the wild.

The current study aimed to investigate the effects of
both maturity and season on the concentrations of
two health-related bioactive compounds, vitamin C
and ellagic acid, as well as on the morphology (length,
weight and width) of wild harvested KP fruits from
the Northern Territory of Australia.

Materials and methods

Reagents

Commercial chemical standards (HPLC grade) of L-
ascorbic acid and ellagic acid were purchased from
Sigma-Aldrich (Castle Hill, NSW, Australia). Other
reagents, including 1,4-dithiothreitol, meta-phosphoric
acid, formic acid, acetic acid, hydrochloric acid and
organic solvents used throughout the study, were of
analytical grade and sourced from Sigma-Aldrich or
Merck (Castle Hill, NSW, Australia).

Sample collection

KP fruits were collected from Thamarrurr region,
Northern Territory (Australia), after obtaining a permit
from the Northern Territory Parks and Wildlife Com-
mission and permission from the Traditional Owners.
The season normally starts from December to June in
Northern Territory (Australia), and the KP fruit sam-
ples used in the current study were randomly harvested
from three individual trees in April 2016 and 2017, and
from six individual trees in April 2019. After harvest-
ing, the fruits (ca. 5 kg per tree) were manually allo-
cated into four different maturity groups from
immature to mature (approximately 500 g per maturity
stage; Fig. 1), using a visual method based on differ-
ences in the fruit shape and the degree of fruit fullness
between maturity stages as previously described by Sul-
tanbawa et al. (2018). A maturity index guideline
describing exterior differences between the four matu-
rity stages was included in Fig. 1. After sample alloca-
tion, whole fruit samples were kept at refrigerated
conditions (4 °C) during transportation to the labora-
tory. The weight, length and width of the refrigerated
fresh fruit samples were measured. After that, the whole
intact fruit samples were frozen and lyophilised at �50
�C for 48 h (CSK Climateck, CSK Scientific, Brisbane,
QLD, Australia). Lyophilised fruits were processed,
where the flesh and seeds were separated using a labora-
tory blender (Waring�, Australian Scientific, Sydney,
NSW, Australia). The freeze-dried flesh was retained
and milled into a fine powder using a Mixer Mill (MM
400 Retsch, Thermo Fisher Scientific, Brisbane, QLD,
Australia). The KP powdered samples were stored at
�35 �C for further chemical analyses.
Climate data, such as temperature, rainfall and sun

exposure, were obtained in a monthly format (from
December to April) for each harvest season from the
Australian Government’s Bureau of Meteorology web-
site (http://www.bom.gov.au/climate/data/, accessed on
15th September 2020).

Fruit morphology

To measure fruit morphology, ten fresh KP fruit sam-
ples were randomly selected from each maturity stage
and from individual trees. The morphological parame-
ters (width and length) were measured in the randomly
selected samples using a 150-mm Digital Calliper
(Craftright Engineering Works, Jiangsu, China). The
fruit weight was also recorded using a laboratory scale
(g � 0.01 g) (Sartorius CP224S, Gottingen, Germany).

Extraction and analysis of ellagic acid

Analysis of total ellagic acid (free and conjugated
forms) was performed following the method previously
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reported by Williams et al. (2016) with slight modifica-
tions. In brief, approximately 100 mg KP fruit pow-
dered samples was extracted with 80% (v/v) methanol
containing 0.01N HCl using a vortex, followed by son-
ication for 10 min at room temperature. Both the free
and conjugated ellagic acids released in the extract (su-
pernatant) were collected after centrifugation at 3900 g
for 5 min at 20 °C (Eppendorf Centrifuge 5810 R,
Hamburg Germany). The pellets were re-extracted
twice with absolute methanol, followed by centrifuga-
tion as described above. The supernatants were com-
bined and subjected to a WatersTM UHPLC-PDA
system (Waters, Milford, MA, USA) for analysis and
quantification of free ellagic acid released in the
extract (Fig. 2b). To quantify ellagic acid existing as
esterified form, 2 mL of the extract was transferred
into a 5-mL Reacti-Therm vial (Thermo Fisher Scien-
tific) and evaporated until dryness under nitrogen,
using a Thermo ScientificTM Reacti-Vap Evaporator
system. After evaporation, 2 mL 2N HCl was added
into the Reacti-Therm vials for overnight hydrolysis at

90 °C following the method of Williams et al. (2016).
Ellagic acid released after the hydrolysis was dissolved
into absolute methanol and injected into an UPLC-
PDA system for quantification of total ellagic acid
(both free and conjugated forms) (Fig. 2c). The extrac-
tion and hydrolysis were conducted in triplicate.
Liquid chromatography analysis was performed

using a WatersTM UHPLC-PDA system and a Waters
BEH Shield RP C18 column (100 9 2.1 mm i.d;
1.7 µm) maintained at 40 °C. Mobile phases consisted
of 0.1% formic acid in milli-Q water (eluent A) and
0.1% formic acid in acetonitrile (eluent B). Gradient
elution programmed for B at a flow rate of
0.3 mL min�1 was as follows: 5% B for 1 min, 20% B
for 4 min, 40% B for 10 min, 100% B for 2 min and
re-equilibration for 5 min before the next injection.
Total ellagic acid was quantified using an external cali-
bration curve of ellagic acid monitored at 254 nm
(Fig. 2a). The percentage coefficient of variation (%
CV) of ellagic analysis in all the samples was in the
range of 0.14–11.8%.

Figure 1 KP fruits harvested at four differ-

ent maturity stages based on percentage full-

ness of the fruit: 0–25% (Stage 1), 25–50%
(Stage 2), 50–75% (Stage 3), and 75–100%
(Stage 4).
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Extraction and analysis of vitamin C

Analysis of vitamin C in KP fruit powdered samples
(in triplicate) followed the method described by Phan
et al. (2019) using a Waters Acquity UPLC-PDA sys-
tem and a Waters HSS-T3 column (150 9 2.1 mm i.d;
1.8 lm) maintained at 25 °C with an isocratic elution
(0.2 mL min�1 of 0.1% aqueous formic acid). Vitamin
C was quantified using an external calibration curve of
L-ascorbic acid monitored at 245 nm. The percentage
coefficient of variation (%CV) of vitamin C analysis in
all the samples was in the range of 0.7–5.7%.

Statistical analysis

A general linear model (GLM) was selected as an
appropriate statistical approach which enables to
specify the degree of interaction between multiple

independent variables and to perform analysis of vari-
ance (ANOVA) for both balanced and unbalanced
data (Shaw & Mitchell-Olds, 1993; Cnaan et al., 1997;
SAS Institute, 2015). In the current study, data with
unbalanced repeated measurements (three individual
trees for seasons 2016 and 2017 and six individual
trees for season 2019) were analysed using a GLM
procedure, followed by Tukey’s method of multiple
comparison (Minitab 17� for Windows, Minitab Inc.,
State College, PA, USA).
Linear correlation was also used to show the rela-

tionships between the bioactive compounds analysed,
fruit morphological and abiotic parameters (tempera-
ture, rainfall, solar exposure) using Graphpad Prism
version 8.3 (GraphPad Software, San Diego, CA,
USA). A P value of ≤0.05 was used to determine sig-
nificant differences between treatments (e.g., maturity
and season).

Figure 2 Representative UHPLC-PDA chromatograms @ 254 nm of (a) ellagic acid standard at 100 ppm and the sample extracts (b) before

and (c) after acid hydrolysis.
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Results and discussion

Effect of maturity and season on fruit morphology

Table 1 shows the differences in fruit morphology
associated with maturity in the KP fruit samples col-
lected from immature (M1) to mature (M4) stages.
Fruit samples collected over the three seasons showed
a steady increase in fruit weight from 1.8 to 3.2 g
from M1 to M4, although no statistically significant
differences were observed. Both fruit length and
width slightly decreased with maturity (P > 0.05;
Table 1), ranging from 23.6 to 35.3 mm and 15.3 to
20.1 mm, respectively. Fruit weight results are in
agreement with those reported in the literature, where
the average weight of KP fruit samples collected from
the Northern Territory of Australia ranged from 1.5
to 3.4 g (Konczak et al., 2014). However, both fruit
length and width were higher compared with those
reported in the literature where values averaged
between 20 mm in length and 10 mm in width (Lim,
2012). A significant increase in fruit weight, followed
by minor changes in fruit length as fruit mature, has
been also reported in other edible indigenous fruit
samples such as Natal plum (Carissa macrocarpa)
(Ndou et al., 2019). No statistically significant differ-
ences in fruit morphological parameters between the
three seasons analysed were observed, implying that
the changes in environmental conditions (assumably
temperature, rainfall and sunlight) over the three har-
vest seasons might not have an effect on these param-
eters measured in the wild harvested KP fruit
samples.

Effect of maturity and season on vitamin C

Figure 3 summarises the vitamin C results of the KP
fruit samples (four maturities and three seasons). The
results showed an increase in vitamin C concentration
associated with the advance of maturity (from M1 to
M4) over the three seasons evaluated. The concentra-
tion of vitamin C in the KP fruit samples significantly
increased from 1.2 to 21.2% DW from M1 to M4
(Fig. 3). These results suggested a direct effect of fruit
maturity on the biosynthesis and accumulation of vita-
min C in the KP samples during fruit growth. Overall,
our findings are in agreement with those reported by
others, where fruits have been sourced from domesti-
cated crops such as strawberry, pomegranate and white
guava. These authors described an increase in vitamin C
synthesis associated with fruit maturity and/or ripening
(Olsson et al., 2004; Soares et al., 2007; Fawole &
Opara, 2013). For instance, the highest concentration of
vitamin C in strawberry fruit could be observed in sam-
ples harvested at the late ripening stages or full maturity
(e.g., dark colour) (Olsson et al., 2004). Similarly, the
highest concentration of vitamin C in pomegranate
(Fawole & Opara, 2013) and white guava (Soares et al.,
2007) was observed at late maturity stages. It has been
proposed that vitamin C synthesis and metabolism in
fruit tissues followed the D-galacturonate pathway,
which in short converts L-galactono-1,4-lactone to
ascorbate by the activity of the enzyme L-galactono-1,4-
lactone dehydrogenase (Fenech et al., 2018). In addi-
tion, the biosynthesis of ascorbic acid becomes more
active in fruits with full ripening or fruits that reached
the late stages of maturity (Fenech et al., 2018). Badejo

Table 1 Morphological parameters of KP fruits and climate conditions at the collection site over three seasons

Season

Maturity

stages

Morphology * Climatic condition **

Weight (g) Length (mm) Width (mm)

Min. air

temp. (�C)
Max. air

temp. (�C)
Aver.

Temp (�C) Rainfall (mL)

Solar exposure

(MJ m�2)

2016 1 1.8 � 0.4 35.3 � 6.3 20.1 � 2.3 24.9 � 1.2 34.3 � 1.2 a 29.6 � 0.5 a 223.4 � 200.2 ab 18.9 � 1.8 b

2 2.3 � 0.5 27.5 � 0.6 16.7 � 2.7

3 3.1 � 1.3 27.9 � 3.6 17.1 � 2.9

4 3.2 � 1.4 26.6 � 5.1 17.2 � 3.1

2017 1 1.8 � 0.5 26.2 � 3.2 17.5 � 1.4 24.4 � 0.8 32.5 � 0.9 b 28.5 � 0.4 b 381.3 � 176.2 a 19.3 � 1.8 b

2 2.7 � 1.5 27.2 � 9.6 16.3 � 2.3

3 2.7 � 1.9 25.0 � 9.7 15.8 � 3.4

4 3.2 � 1.8 23.8 � 8.6 16.0 � 3.2

2019 1 2.0 � 0.5 25.2 � 4.0 15.6 � 1.5 25.1 � 1.3 34.0 � 0.6 a 30.0 � 0.8 a 157.3 � 75.9 b 22.5 � 1.4 a

2 2.0 � 0.5 23.8 � 2.3 15.3 � 1.8

3 2.5 � 0.4 24.6 � 1.7 15.4 � 1.0

4 2.8 � 0.5 23.6 � 2.0 15.9 � 1.9

(*) Morphological data present mean � SD (n = 3 for 2016 and 2017; n = 6 for 2019). (**) Average data of climatic condition collected monthly dur-

ing KP fruit growth and ripening from December to April at the Port Keats Airport station (Bureau of Meteorology Station number: 014948; Northern

Territory, Australia; http://www.bom.gov.au/climate/data/). Different letters at the same column indicate significant differences at P ≤ 0.05.
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et al. (2012) also reported that photosynthesis during
immature or green fruit development stages of tomato
could reduce ascorbate production. This association
between maturity and ascorbic acid might explain the
observation of low concentration of vitamin C in the
immature KP fruit samples analysed.

Regarding the seasonal effect (year of harvest) on
the concentration of vitamin C, the results of this
study showed that fruit samples collected during the
2016 season had a higher vitamin C content than those
samples harvested in 2017 and 2019. However, no sta-
tistical differences were observed between the seasons
(P > 0.05, Fig. 3). It was observed that the 2016 sea-
son had the highest temperature and a moderate rain-
fall compared with the other two years, whereas the
2019 season had the lowest rainfall (see Table 1).
These results suggested that temperature and moderate
rainfall during fruit growth might be the crucial fac-
tors in explaining the exceptionally high concentration
of vitamin C in the 2016 KP fruit samples.

Domesticated fruit crops have environmental
requirements to optimise yield, where the pool of vita-
min C might be modulated by abiotic factors such as
sunlight exposure or temperature (Gautier et al., 2008;
Zechmann et al., 2011; Suzuki et al., 2014; Fenech
et al., 2018). These factors are well known to have a
specific role in the antioxidant cellular system of
higher plants (Jimenez et al., 2002; Massot et al.,
2013). It has been also reported that a simultaneous
increase in vitamin C level in plant tissues that under-
went oxidative stress (e.g., photosynthetic tissues)
might have an additional beneficial effect on plant tol-
erance (Fenech et al., 2018). It has been proposed by
different authors that oxidative stress might occur

during both fruit development and ripening (Brennan
& Frenkel, 1977; Rogiers et al., 1998; Jimenez et al.,
2002; Huan et al., 2016; Fenech et al., 2018). An early
study in 1981 compared the content of vitamin C
between wild tomato species grown naturally in Peru
and Mexico (e.g., both coastal areas and river valleys,
less than 1000 m above sea level with abundant rain-
falls) (Esquinas-Alcazar, 1981). In this study, the
authors suggested that high sun radiation and warm
temperatures could explain why individual tomato
plants tended to have higher concentrations of vitamin
C (Esquinas-Alcazar, 1981), which are similar to those
encountered in the Northern Territory of Australia. It
is also important to note that KP fruit grows naturally
in the wild, where the combination of sunlight, rainfall
and temperature might influence the biosynthesis of
vitamin C. These factors are not controlled by anthro-
pogenic interventions as it is happening in domesti-
cated crops (Lee & Kader, 2000; Koyama et al., 2012;
Teixeira et al., 2013; Sun et al., 2017; Fenech et al.,
2018). In addition, large standard deviations observed
in Fig. 3 could be due to tree-to-tree variation, clearly
reflecting a considerable effect of wild harvest condi-
tion to the content of vitamin C of KP fruits. Konczak
et al. (2014) has reported a large fluctuation in the
concentration of both vitamin C and ellagic acid
between individual KP trees collected at the same geo-
graphical location, which supported the obtained
results of the current study.
Limited research reported the biosynthesis of vita-

min C in wild harvested fruits. However, based on the
current knowledge in ascorbate biosynthesis in culti-
vated plants, it seems that both temperature (high)
and rainfall (moderate) might be the main driving fac-
tors that contribute to the exceptionally high concen-
trations of vitamin C found in the analysed KP fruit
samples. These factors are closely associated with the
commonly harsh conditions found in North Australia.

Effect of maturity and season on ellagic acid

Figure 4 shows the content of ellagic acid in the KP fruit
samples analysed at different maturity stages and sea-
sons. Statistically significant differences were observed
in the concentration of ellagic acid in the wild harvested
KP fruits. However, no statistically significant differ-
ences could be found in the interactions between matu-
rity and season. Similar to the result of vitamin C, large
standard deviations were also observed for the results of
ellagic acid. This could be due to tree-to-tree variation
(Fig. 4), indicating the effect of the wild harvest and
requiring more samples for further studies to substanti-
ate the observation of the current study.
Contrary to the results reported for vitamin C, the

total content of free and conjugated ellagic acid in the
KP fruit samples decreased with the advance of fruit

Figure 3 Changes in the concentration of vitamin C associated with

fruit maturity over three seasons. Data present mean � standard

deviation (n = 3 for 2016 and 2017, n = 6 for 2019); Different letters

indicate significant differences at P ≤ 0.05.
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maturity (P < 0.05; Fig. 4). The same trend was
observed in all three seasons analysed. The concentra-
tion of ellagic acid found in this study was in a similar
range as reported in the literature, where total ellagic
acids in different Terminalia ferdinandiana accessions
varied from 3,050 to 14,020 mg/100 g DW (Konczak
et al., 2014). A higher concentration of ellagic acid
was reported in different strawberry varieties harvested
from green to pink maturity compared with the fully
mature samples, which have a characteristic red colour
(Kosar et al., 2004). The effect of maturity on the con-
centration of ellagic acid was also reported in culti-
vated red raspberries (cv. Caroline), where the
concentration of ellagic acid steadily decreased from
295 µg/100 g fresh weight (FW) at 5% maturity to
45.3 µg/100 g FW at 100% maturity (Wang et al.,
2009). These results support the findings of the current
study that the decrease of ellagic acid might be associ-
ated with fruit maturity.

Statistically significant differences were observed in
the concentration of ellagic acid related with changes
in temperature, rainfall and sunlight exposure between
the seasons 2016 and 2019 (Fig. 4). However, no dif-
ferences were observed between the harvest years 2017
and 2019 (P > 0.05). Fruit samples harvested in 2019
had the highest concentration in total ellagic acid
(4.28–6.52 g/100 g DW), followed by the fruits col-
lected in 2017 (2.41–5.41 g/100 g DW) and 2016 (2.07–
4.21 g/100 g DW). It has been reported that different
abiotic conditions such as temperature, solar exposure
intensity and rainfall can affect the biosynthesis of ella-
gic acid and other phenolic compounds (Anttonen &
Karjalainen, 2005; Koyama et al., 2012; Sun et al.,
2017; Hykkerud et al., 2018). Several studies have
reported the effect of ‘season’ on the biosynthesis and

concentration of ellagic acid; for example, in cloud-
berry fruits harvested from different locations (Hyk-
kerud et al., 2018) and walnut fruit (Juglans regia L.)
(Solar et al., 2006).
In this study, differences were observed in tempera-

ture and rainfall between the three harvest seasons
(Table 1; P < 0.05). The 2019 season had the lowest
rainfall compared with the other two seasons, but the
fruits had the highest ellagic acid content; whereas
fruits harvested in 2016 and 2017 (high rainfall) had
significantly lower ellagic acid concentrations
(Table 1). Overall, these results might indicate that
high rainfall during the season determines a decrease
in the biosynthesis and accumulation of ellagic acid.
Our findings are in agreement with those reported in
the literature, suggesting that water stress can modu-
late the synthesis and accumulation of phenolic com-
pounds in domesticated fruits including grapes
(Quiroga et al., 2012; C�aceres-Mella et al., 2017),
cherry tomatoes (S�anchez-Rodr�ıguez et al., 2012) and
medicinal plants (Albergaria et al., 2020).

Relationships between fruit morphology, bioactive
compounds and climate parameters

Linear regression was used to assess the relationships
between fruit maturity, climate data and bioactive
compounds determined in the KP fruit samples. Fig-
ure 5a shows a positive correlation (r = 0.43, P = 0.01)
between the concentration of vitamin C and fruit
weight. This correlation indicated that as fruit
increases its weight (dry matter) during maturity, the
concentration of vitamin C increases too. This is in
agreement with a previous report by others, suggesting
that fruit dry matter might be associated with the
increase in vitamin C (e.g., demonstrated with sweet
pepper fruit (Niklis et al., 2002)).
In contrast, the concentration of total ellagic acid

decreased with an increase in fruit weight (P > 0.05,
Fig. 5b), resulting in a negative correlation between
vitamin C and total ellagic acid (r = �0.52, P < 0.001;
Fig. 5c). No statistically significant correlations were
observed between the other fruit morphological param-
eters (e.g., fruit width and length) and the analysed
bioactive compounds. A possible explanation could be
that both parameters, fruit width and length, did not
significantly change during fruit development (Table 1).
Figure 6 mostly shows weak to moderate linear

regressions between the climate data (average of mini-
mum and maximum air temperatures, rainfall and solar
exposure) and the concentration of vitamin C and ella-
gic acid, except for a significant positive correlation
between total ellagic acid and solar exposure (Fig. 6a;
P = 0.01). Similar results have been reported in the liter-
ature, suggesting that light quality and intensity can
have a significant impact on the biosynthesis and

Figure 4 Changes in the concentration of ellagic acid associated with

fruit maturity over three seasons. Data present mean � standard

deviation (n = 3 for 2016 and 2017, n = 6 for 2019); Different letters

indicate significant differences at P ≤ 0.05.
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accumulation of polyphenols during fruit growth (Wang
et al., 2009; Koyama et al., 2012; Sun et al., 2017). Jaak-
kola et al. (2012) reported a “poor” correlation between
the biosynthesis of phenolic compounds in wild har-
vested cloudberry fruits and the average maximum daily
temperature, and suggested that the formation of
polyphenols was highly related to sunlight exposure. It
has been reported in viticulture that hot climate regions
could produce grapes with a higher total anthocyanin
content compared with grapes that were cultivated in a
cooler climate (Cozzolino et al., 2010). No statistically
significant correlations were found between ellagic acid,
average temperature and rainfall. The same trend was
observed for the relationships between vitamin C and
the climate data (Fig. 6d,e and f).

Conclusions

The current study provided insight into the effects
of fruit maturity and season on the variability of

health-related bioactive compounds in wild harvested
KP fruits. Our results indicated that fruit maturity
plays a crucial role in determining the concentration
of vitamin C in KP fruits at harvest, whereas total
ellagic acid was significantly reduced during ripening.
Seasonal effects seem to be a minor factor in terms of
accumulation of vitamin C, but had a significant effect
on ellagic acid, with solar exposure and intensity as
key factors. The obtained results could be important
and beneficial for the KP industry and Indigenous
enterprises to better understand the variability of vita-
min C and ellagic acid with changes in fruit maturity
and season. This information is also helpful for fur-
ther development of a standard harvest protocol for
the KP fruit grown in the wild. Even though the study
had a limited sample size due to management of wild
harvested botanical material and permits for collection
with approval from Traditional Owners, a total of
twelve trees with four maturity stages per tree, col-
lected over three seasons, gives a significant amount

Figure 5 Linear correlations between fruit weight and (a) vitamin C and (b) total ellagic acid, and (c) between vitamin C and total ellagic acid.

© 2021 Institute of Food, Science and Technology (IFSTTF)International Journal of Food Science and Technology 2021

Maturity and seasonal effects on Kakadu plum vitamin C and ellagic acid A. D. T. Phan et al.8



of information on the trends of changes in bioactive
compounds. Further studies are warranted having a
larger samples size, more sampling locations and addi-
tional harvest seasons to substantiate the current
results. In addition, the physiological processes during
ripening affecting the biosynthesis and accumulation

of vitamin C and ellagitannins in wild harvested KP
fruits should be another focus in future studies. Inves-
tigations on health-related properties (e.g., antioxi-
dants, anti-diabetes and anti-inflammatory) of KP
fruits harvested at different maturity stages are also
recommended.

Figure 6 Linear correlations between climate data and total ellagic acid (a, b, c) as well as vitamin C (d, e, f).
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Abstract
This work investigated the effect of leaf development (maturity) on 
morphology, antimicrobial activity, total phenolic (TPC) and ascorbic 
acid content in leaves of Terminalia ferdinandiana, an endemic plant 
of Australia. The results of this study indicated that total ascorbic acid 
was in the range of 23.0 to 35.5 mg/100 g dry weight (DW), showing 
an increase with advance of maturity. TPCin water and methanolic 
extracts were in the range of 237.3 - 598.6 and 210.3 - 319.6 mg Gallic 
acid equivalent (GAE)/ g DW, respectively. Leaf extracts exhibited 
pronounced inhibitory activity towards Staphylococcus aureus where 
total ascorbic acid and TPC were positively correlated with the observed 
antimicrobial activity. These results indicated that leaves extracts might 
be used asan alternative to synthetic antimicrobial agents, with a great 
potential for application as an environmentally friendly sanitizer in the 
hospitality and healthcare industries.
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Introduction
Terminalia ferdinandiana (Exell, Combretaceae), 
is an endemic plant of Australia, with edible fruits 
that are extremely rich in antioxidant compounds.1-6  
Like its counter parts from the genus Terminalia, this 
plant has a rich history of being utilised as a traditional 
medicine by the Australian aboriginal communities. 
Fruits of this plant have been used to prepare various 
ailments for the cure of headaches, to alleviating 
symptoms of colds and fluand as an antiseptic.1-8  

This planthas been also used for its medicinal 
properties in the same way as T. carpentariae, 
another Australia native Terminalia species.9

Recent studies have reported on a number of 
bioactive properties of T. ferdinandiana which support 
many of the traditional medicinal claims of this plant 
by the Australian Aboriginal communities.10-12 Some 
of thesereports also indicated that polar solvent 
extracts from T. ferdinandiana fruit were effectivein 
inhibiting both Gram-positive and Gram-negative 
bacteria.10-12

Protective effects of T. ferdinandiana fruit extracts 
on oxidative stress and inflammatory pathways have 
been also reported by other authors.13-14 The potent 
biological activity observed in T. ferdinandianais 
attributed to the presence of enhanced levels 
of antioxidant bioactive compounds.15-16 Some 
of the bioactive phytochemicals detected in  
T. ferdinandiana fruit and leaves include ascorbic acid, 
ellagic acid, gallic acid, α-tocopherol, ethyl gallate, 
chebulic acid, corilagin, hydroxycinnamic acid, 
lutein, tannins, chebulagic acid, exifone, punicalin, 
castalagin, appanone A-7 methyl ether, xanthotoxin, 
phthalane, saponins, flavonoids, and terpenes.1-19 

Elevated antioxidant activitywas confirmed by early 
studies by Netzel and collaborators(2007)who 
measured the antiradical properties by the TROLOX 
Equivalent Antioxidant Capacity (TEAC) assay.15 
The antioxidant capacity of 567 T ferdinandiana 
fruit from 45 geographic sites was also reported 
demonstrating the important antioxidant activity of 
this plant.2, 20-21 Recently, TPC of methanolic extracts 
of T. ferdinandiana fruits and leaf (obtained by 
accelerated solvent extraction) have been reported 
to be 12.2 and 11.7 g GAE/100 g DW.22

One of the most prominent antioxidant phytochemicals 
present in T. ferdinandiana is ascorbic acid or 

vitamin C, which is essential for human health. Due 
to its strong antioxidant properties, ascorbic acid 
neutralizes reactive oxygen species, prevents the 
generation of new free radicals by suppressing 
relevant molecular pathway and assists in the 
recycling of other antioxidants.20-21 Vitamin C also 
plays an important immunomodulatory functions 
such as regulation of macrophage activity, reduction 
of inflammatory mediators, and imparting direct 
bacteriostatic effect at high concentrations.22

High levels of ascorbic acid(>14% DW)have been 
reported in T. ferdinandiana fruits.5-6 Other studies 
have also reported a wide range of ascorbic acid 
levels in T. ferdinandiana fruits (3.5 - 5.9% FW) and 
in the range of0.1 - 5.3% FW.1-4, 5,23 Levels of ascorbic 
acid in the T. ferdinandiana fruit were observed 
at significantly higher concentrations than other 
well-known natural sources of ascorbic acid like 
citrus fruit (0.5% FW ascorbic acid),24 Acerola fruit  
(1.0 and 1.4% FW)24-25 and Camu-Camu (1.8% 
FW).24-25

As the consumer awareness on the health promoting 
activities of the T. ferdinandiana fruit and its 
products, increasing demands for new applications 
are driving food industry to find novel applications 
of T. ferdinandiana as a functional food ingredient. 
Currently, only frozen puree and freeze-dried 
powder of T. ferdinandiana fruit are commercially 
available; however, anecdotal evidences and recent 
studies have indicated that other tissues such as 
leaves, seed coats and kernels could also be used 
for food and other applications.22,26 The leaves of  
T. ferdinandiana could be a great candidate for such 
novel applications. Anecdotally, there are accounts of 
using broken T. ferdinandiana leaves for cleaning by 
scrubbing hands within the Indigenous Australians 
indicating potential antimicrobial efficacy of the 
leaves. A recent study, evaluated the antimicrobial 
activity of extracts were prepared from different 
T. ferdinandiana tissues including fruits, leaves, 
seedcoats, and barks. Itwas observed that both 
fruit and leaf extract exhibited superior antimicrobial 
activity, against common foodborne bacteria.22, 26

As T. ferdinandiana is a semi-deciduous tree, it drops 
its leaves in the dry season, and spouts new leaves 
at the beginning of the wet season. The characteristic 
morphology of the leaves should make them easier 
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to harvest than fruit. Leaves of Terminalia plants 
are usually spirally organised (often crowded) at the 
ends of the branches, sometimes on short shoots. 
In fact, the genus name ‘Terminalia’ comes from 
the Latin word ‘Terminus’ relating to the factthat the 
leaves are located at the very tips of the shoots.
Mature T. ferdinandiana leaves areusually large in 
size, making it possible to collect larger volume of 
raw material. Although several studies have shown 

the bioactive potentials of T. ferdinandiana leaves, 
information on the effect of maturity of leaves on their 
bioactive compounds or bioactivity is not available.

The objective of this work was to provide with 
information on morphology, antimicrobial activity, 
total phenolic and ascorbic acid content in  
T. ferdinandiana leaves over different stages of 
maturity.

Fig.1: Map showing distribution of T. ferdinandiana (as plotted using tree records from Atlas of 
Living Australia) and approximate locate of study site at Charles Darwin University, 

Darwin, Northern Territory, Australia

Materials and Methods
Plant Material
Fieldwork for this study was conducted in 
undeveloped bushland in the northwestern corner 
of the Charles Darwin University, Casuarina campus 
(Darwin, Northern Territory, Australia) (see Figure 1). 
The study site is within one kilometre of the coastal 
shoreline, comprising open savanna woodland with 
incipient monsoon forest along old streamlines 
and is representative of T. ferdinandiana habitat.23 
The mean annual rainfall from 1995 to 2020 was 
1768 mm and mean daily temperatures ranged 
from a minimum of 23.2 to a maximum of 32.1°C  
(Bureau of Meteorology 2020).

Leaf samples were harvested from November 2017 
to June 2018. A total of 15 different maturity stages of 

leaves (10 leaves per stage) were collected from 10 
individual trees (AT1 to AT10). Stage 1 to 4 contain 
immature leaves; stage 5 to 10 contain mature leaves 
and stage 11 to 15 contain senescing leaves. Leaves 
of stages 12 to 15 were collected from fewer than  
10 individual trees as some of the trees had dropped 
their leaves ahead of others. Details of the harvesting 
timeare provided in Table 1. For the current study, 
5 maturity stages, were selected from 3 individual 
trees (10 leaves per stage per tree) for analysis. 
The selected maturity stages for the current study 
allowed us to look at leaves at immature stage  
(e.g. stages 2 and 3), mature stage (e.g. stage 
6 and 10) and senescing stage (e.g. stage 15)  
(see Figure 2).
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Morphological Parameters
Length and width of 10 individual leaves of 
each maturity stage from three individual trees 
were measured using adigital calliper (Craftright 
Engineering Works, Jiangsu, China) followed by 
measuring the weight on laboratory scales (Sartorius 
CP224 Sanalytical balance with readability precision 

0.01g, Gottingen, Germany). The leaves were frozen 
at -80°C and then freeze dried at -50°C for 48h  
(CSK Climatek, Darra, QLD, Australia). After freeze 
drying, around 2 g of dry leaves were ground using 
a Retsch MM400 ball mill (Retsch GmbH, Haan, 
Germany) at a speed of 30 Hz for 1 min.

Fig. 2: The selected maturity stages of the current study. Stages 2 and 3 represent the immature 
leaves, stages 6 and 10 represent the mature leaves and stage 15 represent senescing leaves

Table 1:  Time of collection of Terminalia ferdinandiana leaf samples

	 Maturity stages	 Time of collection

Immature leaves*	 1	 14 Nov 2017
	 2	 14 Nov 2017
	 3	 14 Nov 2017
	 4	 14 Nov 2017
Mature leaves	 5	 9 Jan 2018
	 6	 14 Feb 2018
	 7	 12 Mar 2018
	 8	 14 Apr 2018
	 9	 14 May 2018
	 10	 21 May 2018
Senescing leaves	 11	 30 May 2018
	 12**	 6 Jun 2018
	 13***	 13 Jun 2018
	 14***	 21 Jun 2018
	 15***	 26 Jun 2018

*These samples were collected on the same time point as the newly sprouted 
leaves of stage 1. Leaves were divided into stage 2, 3 and 4 on the increase 
in sizes. 
**Leaves from stage 12 were collected from 6 individual trees (10 leaves 
per tree). 
***Leaves from stage 13, 14 and 15 were collected from 4 individual trees 
(10 leaves per tree). 
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Extraction of Bioactive Constituents
Bioactive constituents from T. ferdinandiana leaves 
were extracted by either methanol or deionized water. 
Triplicate samples (approx. 0.5 g) of the freeze-dried 
powders were accurately weighed into separate 
centrifuge tubes and individually blended with 5 ml 
of each solvent. After 30 seconds of vortex-mixing, 
the tubes were sonicated in an ultrasonic bath (Elma 
Schmidbauer GmbH, Ruiselede, Belgium) for 5 min 
at room temperature, followed by another 5 min 
of gentle agitation. The slurry was subsequently 
centrifuged at 3900 rpm for 5 min using an Eppendorf 
5180 centrifuge (Eppendorf, Hamburg, Germany). 

The supernatant was carefully transferred and 
collected while the residues extracted twice again. 
After 3 times of extractions, a total volume of 15 ml of 
the crude extracts were combined and evaporated in 
a rotatory evaporator (Genevac Ltd, Ipswich, Suffolk, 
England) at 40°C. The dried extracts were freshly 
reconstituted in 5 mL of aqueous 20% v/v methanol 
(for methanol extracts) or deionized water (for water 
extracts) prior to analysis of antimicrobial activities. 
The reconstitute extract was stored at biomedical 
freezer (MDF U5312, PHCbi, Panasonic) and daily 
monitored using a digital thermometer.

Supplementary 2:  Representative photos show (B) the inhibition of methanol extracts and (A) 
antibiotic solution (10 μl of Penicillin and streptomycin at 1g each/10 mL methanol) against 

Staphyloccocus areus and negative control 20% methanol.

Antimicrobial screening
A total of three pathogenic microbial strains were 
tested in this study to evaluate the antimicrobial activity 
of T. ferdinandiana leaf extracts: Staphylococcus 
aureus NTCC 6571, a Gram-positive bacteria; 
Escherichia coli NTCC 9001, a Gram-negative 
bacteria and Candida albicans ATCC 90028 a fungi. 
The bacterial strains were purchased from American 
Type Culture Collection, USA or National Collection 
of Type Cultures (NCTC), UK.  Well diffusion assay 
was used to evaluate the antimicrobial activity of 
the leaf extracts followed the method published 
by Phan and collaborators(2019).27 The inhibition 
zone was measured using a 150 mm Digital Calliper 
(Craftright Engineering Works, Jiangsu, China).  
MIC will be suggested for further investigations uing 
a widen ranges of microorganisms. All plates were 
incubated overnight in triplicate (see Supplementary 
material S2).

Total Phenolic Content (TPC)
The total phenolic content (TPC) of the samples 
was determined using the Folin Ciocalteau (FC) 
method using a micro-plate reader (Sunrise Tecan, 
Maennedorf, Switzerland).28 Gallic acid standards 
ranging from 21 to 105 mg/L were prepared to 
establish the standard curve for quantification of 
TPC in the extract. TPC was expressed as mg gallic 
acid equivalents per gram of sample in dry weight 
(mg GAE/g DW).

Extraction and Analysis of Ascorbic Acid
Measurement of vitamin C content in T. ferdinandiana 
leaf extracts was conducted by utilizing ultra-
high-performance l iquid chromatographic–
photodiode array (UHPLC-PDA) methodology.29-30  
(See chromatogram S1). 
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Supplementary 1:  UHPLC-PDA acquired at 245 nm of (A) 
ascorbic acid standard and (B) the leaf extract

Table 2: Morphological data for Terminalia ferdinandiana 
leaves at various stages of maturity

Tree ID	 Maturity stage	 Length (mm)	 Width (mm) 	 Weight (g)

AT2	 2	 58.7± 6.5	 36.8± 5.1	 0.4 ± 0.1
	 3	 112.5± 8.6	 95.5± 10.9	 1.9 ± 0.3
	 6	 159.6± 16.5	 123.4± 9.6	 4.0 ± 0.9
	 10	 149.5± 18.0	 122.6± 15.8	 3.4 ± 0.6
	 15	 124.8± 30.0	 106.3± 16.4	 2.4 ± 0.9
AT5	 2	 80.5± 7.7	 50.9± 7.1	 0.8 ± 0.2
	 3	 133.4± 20.4	 98.9± 18.1	 2.5 ± 0.8
	 6	 184.6± 17.1	 126.3± 16.1	 5.1 ± 0.8
	 10	 162.4± 24.1	 118.1± 27.7	 3.6 ± 1.1
	 15	 189.4± 28.4	 123.9± 17.1	 4.1 ± 1.1
AT9	 2	 73± 19.9	 46.2± 12.2	 1.2 ± 0.8
	 3	 138.1± 25.5	 91.4± 15.8	 2.5 ± 0.9
	 6	 187± 23.8	 136.1± 14.8	 5.0 ± 1.0
	 10	 168.9± 48.4	 119.7± 21.5	 3.6 ± 1.7
	 15	 135.3± 17.7	 109.9± 19.0	 3.6 ± 1.3

Results are mean ± SD (n = 10)
AT indicate the tree ID of the individual trees collected from the study site at Charles 
Darwin University, Darwin, Northern Territory, Australia.

Data analysis
Descriptive statistics (average, minimum and 
maximum values, and standard deviation), principal 
component analysis (PCA) and multiple linear 
regression (MLR) wereapplied to inspectthe relevant 

and interpretable structure in the data set associated 
with the variables measured in the leaf samples at 
the different maturities. The optimum number of 
components in both PCA and MLR analysis was 
determined internal cross validation (leave one 
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out).31 The Unscrambler software (version 10.5, 
CAMO, Norway) was used to develop the PCA and 
MLR regression models. Samples were standardised 
using the pre-processing 1/SD.31

Results and Discussion
The current study analysed T. ferdinandiana leaves 
at 5 maturity stages namely immature leaves at 
stages 2 and 3; mature leaves at stages 6 and 10, 
and senescing leaves at stage 15. Leaves from 
stages1 to 4 were collected at the same time as 
the freshly sprouted leaves (e.g.stage 1). These 
immature leaves were then divided into 4 stages 
according to their sizes. From stages 5 to 15, leaves 
were collected at different time points and grouped 
according to their stage of development/maturity 
(Table 1).

Morphological analysis showed that at maturity  
stage 2, irrespective of the tree, leaves had the 
smallest length and width, both of which showed a 
gradual increase in the leaves of stage 3. However, 
leaves at maturity stages 6, 10 and 15 did not have 
a clear trend and showed high variability in length, 
width and weight (Table 2). Tree-to-tree variability 
has been also observed in T. ferdinandiana fruits.  
The high degree of variability observed in the 
leaves and fruits could be attributed to the fact  
T. ferdinandiana is a wild harvested plant and often 
undergoes wide cross-pollination. Interestingly, the 
variability of the morphological parameters seemed 
to decrease with the maturity stage of the leaves 
which is indicated by a lowercoefficient of variation 
(% CV) in the morphological parameters measured 
(Table 5).

Table 3: Total ascorbic acid and total polyphenol content 
Terminalia ferdinandiana leaves at various stages of maturity

Tree ID	 Maturity	 Total ascorbic acid		  Total polyphenol content (mg GAE/g DW)	
	 stage	 (mg/100 g DW)		
 				   Methanolic extracts	 Water extracts	
		                                                                  
AT2	 2	 ND		 533.4 ± 1.5	 263.1 ± 0.8
	 3	 ND		 598.6 ± 1.4	 301.9 ± 1.3
	 6	 23.0 ± 0.1		 279.8± 2.6	 253.9 ± 2.2
	 10	 29.6 ± 0.5		 384.9± 2.4	 274.9± 0.5
	 15	 34.8 ± 0.3		 407.5± 1.9	 295.9± 0.6
AT5	 2	 ND		 294.8± 1.5	 222.2 ± 0.5
	 3	 ND		 330.3± 0.8	 231.8 ± 0.6
	 6	 32.3 ± 0.8		 237.3± 1.6	 210.3 ± 2.1
	 10	 34.9 ± 0.3		 283.9± 0.9	 220.3 ± 2.5
	 15	 35.5 ± 0.1		 247.5± 2.1	 215.6 ± 0.4
AT9	 2	 ND		 388.7± 2.3	 276.2 ± 0.3
	 3	 ND		 579.6± 0.3	 319.6 ± 0.2
	 6	 22.5 ± 0.4		 359.8±1.0	 258.4 ± 0.2
	 10	 32.6 ± 0.5		 323.8±0.9	 259.0 ± 0.4
	 15	 34.7 ± 0.7		 379.9± 0.7	 283.2 ± 0.5

Results are mean± SD (n = 3)

The ascorbic acid levels determined in leaves at 
maturity stage 6, 10 and 15 were between the ranges 
of 22.5 to 34.8 mg/100 gDW (Table 3) whereas no 
peak of ascorbic acid was observedin the UHPLC-
PDA chromatogram for leaves sourced from stages 

2 and 3, respectively.This data suggested that levels 
of ascorbic acid in these immature leaves might be 
present either at a relatively low concentration or 
lower than the limit of detection (LOD = 0.1 parts 
per million) of the method used for the analysis. 
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The lower levels of ascorbic acid in T. ferdinandiana 
leaves compared to fruits have been previously 
reported by other authors.5-6 It is well known that 
ascorbic acid is important bioactive compound 
having important roles in the plant (e.g. redox 
reactions, cofactor of enzymes, photosynthesis, 
hormone biosynthesis, antioxidant function).32-35 
Variation in the ascorbic acid content has been 
reportedamong different tissues and organs in the 
same tree by other authors.32-35 High concentration 
of ascorbic acid was found in tissues such as leaves 
and flowers compared with those photosynthetically 
active such as stems and roots where higher 
concentrations are present in the meristematic 
tissues and reproductive organs (e.g. flowers, 
young fruits).32-35 It has been also reported that the 
concentration of ascorbic acid might be affected by 

the environment and developmental stages of the 
organ (i.e. mature vs immature fruits).36 These factors 
might explain the observed variations in ascorbic 
acid in the leaf samples analysed.

The total phenolic content (TPC) of the leaf extracts 
ranged from 210.3 to 598.6 mg/g DW. The TPC 
values varied from 237.3 to 598.6 mg GAE/g DW 
in the methanolic extracts and from 210.3 to 319.6 
mg GAE/g DW in the water extracts. TPC was 
higher in the leaf methanolic extracts compared to 
the water extracts. Similar results were reported 
by Akter and collaborators (2019). TPC showed 
a gradual decrease with the advance of maturity, 
with the highest levels observed in leaves at  
stage 3 irrespective of the tree in both the methanolic 
and water extracts (Table 3). 

Table 4: Inhibition zones (mm) of methanol and water extracts against S. aureus.

Tree ID	 Maturity stage	           Inhibition zones (mm)

		  Methanolic extracts	 Water extracts

AT2	 2	 23.9 ± 0.8	 21.8 ± 0.3
3	 27.5 ± 0.5	 24.9 ± 0.9
6	 24.9 ± 0.9	 23.1 ± 0.9
10	 26.3 ± 0.3	 24.2 ± 0.6
15	 27.2 ± 0.6	 25.5 ± 0.4
AT5	 2	 23.6 ± 1.5	 21.8 ± 1.3
3	 29.1 ± 0.4	 23.3 ± 0.6
6	 24.4 ± 0.4	 22.6 ± 0.7
10	 26.1 ± 0.1	 23.8 ± 0.4
15	 27.7 ± 0.2	 25.3 ± 0.4
AT9	 2	 24.7 ± 0.4	 21.2 ± 0.7
3	 28.3 ± 1.0	 24.9 ± 0.8
6	 25.7 ± 0.4	 23.6 ± 0.7
10	 26.6 ± 0.9	 24.2 ± 0.7
15	 27.2 ± 0.7	 26.7 ± 0.9
Antibacterial control*	 53.3 ± 0.2	 52.8 ± 0.31

Solvent control**		  -	 -
Results are mean ± SD (n = 3)

*1 µg penicillin and streptomycin was used as antibacterial control.
**Solvent controls included 20% (v/v) aqueous methanol for methanolic extracts and 
water for water extracts

The antimicrobial analysis showed that the methanolic 
and water extracts of T.ferdinandiana leaves have 

strong inhibitory efficacy (e.g. inhibition zone > 13 
mm)37 against the Gram-positive S. aureus, but 
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no inhibition against the Gram-negative E. coliand 
thefungi C. albicans (Table 4). The antimicrobial 
efficacy in terms of inhibitory zones were in the 
range of 23.6 to 29.1 mm and 21.2 to 26.7 mm for 
methanolic and water extracts, respectively. A recent 
study has also reported that methanolic and aqueous 
leaf extracts of T. ferdinandiana were good inhibitors 
of the Gram positive Bacillus anthracis, the etiological 
agent of anthrax.19 Akter and collaborators (2019) 
observed that the methanolic and water extracts of 
T. ferdinandiana leaves inhibited both Gram positive 
and negative bacteria.26 The observed difference in 
the antimicrobial efficacy of T. ferdinandiana leaf 
extracts might be associatedwith the difference in 
the type of bioactive compounds extracted and their 
extent of release from the sample matrix as result of 

extraction method used and geographical location 
of the studied plant material.38-39

Pearson correlation showed strong positive 
correlation between levels of ascorbic acid and 
antimicrobial inhibition exhibited by methanolic 
(Pearson r = 0.60) and water (Pearson r = 0.55) 
extracts (Table 5). This relationship indicated that 
ascorbic acid might be a contributing factor, in the 
observed antimicrobial activity of T. ferdinandiana leaf 
extracts. In fact, a number of studies have reported 
the antimicrobial efficacy of ascorbic acid against a 
number of pathogenic bacteria including S. aureus, 
E coli, Helicobacter pylori, Campylobacterjejuni and 
Mycobacterium tuberculosis.40-42

Table 5:  Descriptive statistics of the variables measured in the 
leaf samples at different maturity stages

	 Mean	 SD	 CV (%)

Length (mm)	 137.2	 45.8	 33.3
Width (mm)	 100.4	 34.1	 34
Weight (g)	 2.9	 1.6	 55
Total ascorbic (mg/100 g dry weight)	 31.1	 4.8	 15.5
TPC methanolic extracts (mg GAE/g DW)	 375	 11	 2.9
TPC water extracts (mg GAE/g DW)	 259	 3.2	 1.2
Inhibition methanolic extracts	 26.2	 1.6	 6
Inhibition water extracts	 23.7	 1.4	 6

CV Coefficient of Variation)

The TPC of methanolic and water extracts were 
negatively correlated to total ascorbic acid content 
(Pearson r = -0.047 and -0.11 respectively). 
This could be explained by the fact that ascorbic 
acid may not be the primary contributor to TPC 
of T. ferdinandiana.43 As mentioned before,  
T. ferdinandiana fruits and leaves are also rich 
sources of bioactive antioxidant compounds 
other than ascorbic acid, such as ellagic acid, 
gallic acid and α-tocopherol.1-6 Significant positive 
correlation was observed between the morphological 
parameters, TPC and antimicrobial inhibition, 
indicating that with maturity the level of phenolics 
and antimicrobial efficacy increases (Table 5).

The data was also analysed by principal component 
analysis (PCA). This method transforms a group 
of highly correlated variables into new data sets 
called principal components (PC). Then, data was 
interpreted using the scores and loadings. This 
algorithm of PCA reduces the dimensionality of the 
data but retains most of the variation in the data 
set, which increases interpretability simultaneously 
minimizing loss of information.31 It was observed a 
variation between samples obtained from different 
trees (Figure3A) and maturity stages (Figure3B), 
indicating the existence ofnatural variability between 
the trees.The PCA loadings allowed to interpret 
which variables might influence the separation 
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between leaves (Figure 4). Most of the differences 
observed between the samples were found to be 
explained by the morphological parameters, level 
of ascorbic acid and antimicrobial efficacy. Further 

more, loadings in PC1 explained the differences in 
maturity stages where high and positive loadings 
corresponded well with all chemical variables such 
as ascorbic acid and TPC. 

Fig. 3: Principal component analysis (PCA) (A) individual trees and 
(B) maturity stages of the leaves. The symbols indicate individual subjects

Fig. 4: Loading plots of principal components. Blue, red and green indicate PC-1, 2 and 3, 
respectively. Variables include: length, width and weight of leaves, TPC and antimicrobial 
activity of methanolic (MeOH) extracts, TPC and antimicrobial activity of water extracts

Fig. 5: Multiple linear regression results. Coefficients of regression derived from the 
multiple linear regression model for length, width and weight of leaves, total ascorbic 

acid content, TPC and antimicrobial activity of methanolic (MeOH) extracts, 
TPC and antimicrobial activity of water extracts
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Multiple linear regression (MLR) analysis indicated 
that 97% of the variance in maturity of T. ferdinandiana 
leaves could be explained by the model reported in 
Figure 5A. The regression coefficients showed that 
ascorbic acid had a large influence in explaining 
maturity stages of the leaves, followed by both 
antimicrobial efficacy and TPC of the water extracts 
(Figure 5B). This indicates that in addition to the 
presence of bioactive compounds (e.g. ascorbic 
acid) other parameters such as antimicrobial activity 
and TPC might also vary with leaf maturity. Therefore, 
the concentration of ascorbic acid and TPC might 
be used as biomarkers to monitor leaf maturity in  
T. ferdinandiana.

Conclusion
For the first time, information on morphology, 
antimicrobial activity, total phenolic and ascorbic 
acid content in Terminalia ferdinandiana leaves was 
reported. Variation in the morphological parameters, 
TPC and ascorbic acid content with advancement 
of maturity was observed in the samples analysed. 
Both PCA and MLR analyses indicated that effect 
of individual trees and maturity stages, where the 
concentration of ascorbic acid explains the variability 
in maturity among leaves.  However, the data in this 
study was not based on a large number of biological 
samples, and hence, is not sufficient to describe 
the effect of maturity on nutritional composition 
of T. ferdinandiana leaves. The use of statistical 
techniques such as PCA and MLR regression, 
allowed us to obtain additional information from 
the data set allowing for a better interpretation of 
the differences associated with maturity.  Results 
from this study also indicated the pronounced 

inhibitory effect of T. ferdinandiana against S. 
aureus. Currently only the T. ferdinandiana fruit (as 
a freeze-dried powder and puree) is commercially 
available as a functional food ingredient, whereas, 
leaves or any other tissues, are not used for any 
industry applications. Leaf extracts showed promise 
as antimicrobial agent, suggesting that might 
be used as alternative to synthetic antimicrobial 
agents. Further studies will be recommended on 
T. ferdinandiana leaves, adding a large number of 
biological samples, trees and maturities, bioactive 
compounds, and anti-nutritional compounds.
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Abstract 29 

 30 

Terminalia ferdinandiana Exell. (Common name: Kakadu plum), is a wild-harvested fruit with limited 31 

information regarding the effects of fruit maturity on the phytonutritional properties and bioactivities 32 

of the fruit. The present study investigated the changes in hydrolysable tannin compounds, sugar 33 

components, physico-chemical parameters, and antioxidant property of wild-harvested Kakadu plum 34 

fruits at four different maturity stages, from immature to fully mature. Chebulagic acid, geraniin, 35 

chebulinic acid, castalagin, gallic acid, and punicalagin concentrations decreased steadily with 36 

advancing fruit maturity. In contrast, the concentrations of elaeocarpusin, helioscopin B, corilagin, 37 

3,4,6-tri-O-galloyl-S-glucose and ellagic acid increased at the beginning of fruit growth and decreased 38 

when the fruits reached full maturity level. In addition, total (sum) amount of the studied hydrolysable 39 

tannins was significantly (p≤0.05) lower in the fully mature samples than the immature one. Total 40 

phenolic content (TPC) and DPPH antioxidant radical scavenging activity did not vary significantly 41 

between different maturity stages. Pearson’s correlation coefficient test indicated that TPC and DPPH 42 

positively (p≤0.05) correlate with most of the studied tannin compounds. Sugars (glucose, fructose, 43 

and sucrose), total soluble solid content and titratable acid content increased during the fruit 44 

development. Principle component analysis (PCA) enabled us to differentiate the immature and mature 45 

samples, based on fruit phytonutritional quality and antioxidant properties. The PCA results also 46 

suggested a considerable variability between the individual trees, which is probably because of wild 47 

harvest practice.   48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 



 

1 Introduction 58 

Terminalia ferdinandiana Exell., an endemic Australian plant, belongs to the family Combretaceae 59 

and is one of the 250 species of Terminalia genus (1). It is commonly known as Kakadu plum, billy 60 

goat plum, and gubinge, and is mainly distributed in Kimberley region of Western Australia, Northern 61 

Territory, and Northern Queensland (2). Kakadu plum is a small to moderate-sized semi-deciduous 62 

tree with smooth-skinned, fleshy ovoid drupes, a short beak and yellow-green colored fruits (3). The 63 

fruit of this plant has been widely used as traditional food or folk medicine by the Australian Indigenous 64 

communities (4). Since Kakadu plum possesses anti-inflammatory, antimicrobial, antioxidant, and 65 

anti-cancer properties (5-7), this has led to increased scientific interest in the characterization of 66 

phytochemicals, biofunctional properties, and applications. The fruit's functional properties have 67 

boosted its popularity in a number of markets, including functional food ingredients, health, cosmetics, 68 

and nutraceuticals (2, 8). 69 

Hydrolysable tannin is a group of polyphenolic compounds possessing high molecular weight, complex 70 

molecular structure, and relatively strong polarity (9). Terminalia species is well known as a rich source 71 

of hydrolysable tannins, of which ellagitannins and gallotannins are dominant and mainly contribute 72 

to the reported health-related benefits of this plant species (10, 11). Studies on characterization of 73 

hydrolysable tannin compounds in Kakadu plum and elucidation of their molecular structures are 74 

limited due to the unavailability of commercial reference materials as well as the diversity and 75 

complexity of their molecular structures (11). In most of the recent studies, hydrolysable tannins in 76 

Kakadu plum are estimated indirectly through the semi-quantification of their corresponding 77 

hydrolyzed metabolites. For instance, quantification of ellagitannins is based on the release of 78 

hexahydroxy-diphenic (HHDP) acid, which undergoes spontaneous lactonization to ellagic acid under 79 

acidic condition at high temperatures (12-14). The hydrolysable tannin and phenolic acid compounds, 80 

such as ellagic acid and corilagin, were identified and quantified as predominant constituents in Kakadu 81 

plum fruit powder, using a high-resolution accurate mass (HRAM) spectrometry (15). Williams et al. 82 

(13) quantified the hydrolysable tannin compounds in Kakadu plum fruit as total ellagic acid equivalent 83 

and reported that the fruit possesses a higher level of ellagic acid (259.1 mg/100g DW) than that of 84 

other common ellagic acid-rich fruits such as strawberry (4.8 mg/100g DW) and boysenberry (5.5 85 

mg/100g DW). Furthermore, the total phenolic content (TPC) of Kakadu plum fruit has been reported 86 

as 6-fold higher than that of blueberry, a bench-mark antioxidant-rich fruit (5, 13). 87 



 

Since Kakadu plum is a traditional wild-harvested fruit, a large fluctuation in the bioactive compounds 88 

(vitamin C and ellagic acid) has been reported in fruits collected from three seasons and four different 89 

maturity stages (14). Phan and co-workers (14) reported a positive correlation between vitamin C and 90 

an increase of fruit maturity in wild-harvested Kakadu plum. However, ellagic acid content decreased 91 

with fruit maturation. Despite this, little is known about the effects of fruit maturation on the 92 

biosynthesis of individual hydrolysable tannin compounds, the accumulation of soluble sugars, and the 93 

antioxidant activity in this fruit. In addition, there is insufficient information about the effects of wild-94 

harvest conditions on the variation of bioactive compounds and bioactivities. Konzack et al. (2014) 95 

(16) reported a significant variation in the levels of bioactive compounds in Kakadu plum fruits 96 

harvested from different accessions, locations, and different individual trees at the same location. 97 

Additionally,  other potential factors including changes in climatic conditions (e.g., rainfall level, solar 98 

exposure intensity, and air temperature) can affect the fruit morphology and the biosynthesis of 99 

bioactive compounds during fruit growth (14).  Therefore, understanding the effect of wild-harvest 100 

conditions on the fruit quality at harvest is crucial for researchers, the Australian Indigenous 101 

community, Indigenous enterprises, and the Australian bush food industry. 102 

Considering the above, the present study aimed to investigate the effects of fruit maturity to the 103 

hydrolysable tannins and phenolic acids, physicochemical properties, sugar components, and 104 

antioxidant scavenging activity of wild-harvested Kakadu plum fruits at four different maturity stages 105 

as described in Figure 1.  106 

 107 

2 Materials and Methods 108 

2.1 Chemical reagents 109 

Polyphenol and sugar standards (HPLC grade, ≥ 95% purity) including gallic acid, ellagic acid, 110 

corilagin, 3,4,6-tri-O-galloyl-S-glucose, castalagin, punicalagin, fructose, glucose and sucrose were 111 

purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). All the other chemicals and solvents 112 

(HPLC/analytical grade) used throughout the study were supplied from Merck (Bayswater, VIC, 113 

Australia) or Sigma-Aldrich.  114 

 115 

2.2 Plant materials 116 



 

Kakadu plum fruits were harvested randomly from six individual trees (ca. 5 kg/tree) in Thamarrurr 117 

region (Darwin, Northern Territory, Australia). The required permissions were obtained from the 118 

Northern Territory Government Parks and Wildlife Commission, and the Traditional Owners. Fruits 119 

from each individual tree were sorted into four different maturity stages from immature to fully mature 120 

levels (approx. 200 g fruit/each maturity stage), based on differences in the degree of fruit fullness 121 

between the maturity stages as reported in previous studies (8, 17). The fruits, reaching less than 25, 122 

25-50, 50-75, and 75-100% degree of fruit fullness, were allocated for the samples at maturity stage 1 123 

(S1), S2, S3, and S4, respectively (Figure 1). Total 24 observations (4 maturity stages x 6 individual 124 

trees) were performed for each variable measured in the present study, followed a completely 125 

randomized block design. 126 

Next, the fruit samples were kept at 4 °C during transportation from the collection site to the laboratory. 127 

After arrival samples were immediately frozen at -35 °C and then freeze-dried at -48 ± 2 °C for 72 h 128 

(CSK Climatek, Darra, Queensland, Australia). After separating the freeze-dried pulp and seeds using 129 

a laboratory blender (Waring, Australian Scientific, Sydney, NSW, Australia), the freeze-dried fruit 130 

pulp were ground into a fine powder using a Mixer Mill (MM400 Retsch, Thermo Fisher Scientific, 131 

Brisbane, QLD, Australia). The fruit powdered samples were stored at -35 °C for further analysis. 132 

2.3 Determination of total soluble solid content and titratable acidity  133 

Approximately 1 g of freeze-dried powder samples was mixed with Milli-Q water (1:20; w/v) and 134 

vortexed for 1 min. The homogeneous mixture was centrifuged at 3900 rpm (25 °C, 10 min) (Eppendorf 135 

5180, Hamburg, Germany). The supernatant was collected for determination of the total soluble solid 136 

content (TSS, %) using a digital refractometer (Hanna Instruments Ltd., Leighton Buzzard, UK), and 137 

measurements of pH and titratable acidity (TA, expressed as percentage of citric acid equivalent) using 138 

an automatic titration unit (Metrohm Dosimat 765, Karl Fischer, Metrohm, Herisau, Switzerland). The 139 

analysis was conducted in triplicate. 140 

 141 

2.4 Extraction of bioactive compounds 142 

Hydrolysable tannins and other phenolic compounds were extracted by mixing approximately 0.5 g of 143 

powdered samples with aqueous methanol (80%, v/v) containing 0.01N HCl according to Bobasa et al. 144 

(2021) (15), with few modifications. The mixtures were sonicated in an ultrasonication bath (Elma 145 



 

Schmidbauer GmbH, Ruiselede, Belgium) for 15 min, followed by 15-min shaking at room 146 

temperature (25 °C) in a reciprocating mixer (RP1812, Paton Scientific, Adelaide, SA, Australia). 147 

Next, the mixtures were centrifuged at 3900 rpm (10 min, 25 °C) (Eppendorf 5180 centrifuge). After 148 

collecting the supernatant, the residues were re-extracted twice with aqueous methanol as described 149 

above. The supernatants were combined and filtered through a 0.2 μm hydrophilic PTFE syringe filter 150 

membrane into HPLC vials for subsequent hydrolysable tannin analysis. The extraction was conducted 151 

in triplicate. 152 

 153 

2.5 UHPLC-HRAM MS/MS analysis 154 

Bioactive compounds in Kakadu plum fruit extract (obtained in section 2.4) were identified and 155 

quantified using a Thermo high resolution accurate Q Exactive mass spectrometer (Thermo Fisher 156 

Scientific Australia Pty Ltd., Melbourne, VIC, Australia), equipped with a DIONEX Ultimate 3000 157 

UHPLC system. The instrumental method was followed according to Bobasa et al. (2021) (15) with 158 

some modifications. The compounds were separated in a Waters HSS T3 column (150 × 2.1 mm i.d; 159 

1.8 μm) maintained at 40 ºC, with 0.1% formic acid as mobile phase A and acetonitrile containing 160 

0.1% formic acid as mobile phase B. The flow rate was 0.3 mL/min and gradient elution for mobile 161 

phase B was as follows: 0-1 min, 5% B; 1-8 min, 5-20% B; 8-15 min, 20-45% B; 15-22 min, 45-100% 162 

B; isocratic elution at 100% B for 2 min and recondition to 5% B for 5 min before the next injection. 163 

The mass spectrometer was operated in parallel reaction monitoring (PRM) in a negative electrospray 164 

ionization (ESI) mode at 35,000 FWHM resolution, AGC target value of 2e5, maximum injection time 165 

of 200 ms, and optimized normalized collision energy (NCE) from 25 to 35eV. The inclusion list of 166 

13 interested/targeted hydrolysable tannins and phenolic acids with detail information about the mass 167 

features presenting in Table S1. A mix-standard solution (including gallic acid, ellagic acid, corilagin, 168 

3,4,6-tri-O-galloyl-S-glucose, castalagin, and punicalagin) was prepared in MeOH and was also 169 

included in the LCMS analysis to facilitate the compound identification and development of external 170 

standard calibration curves for quantification. Thermo Trace FinderTM v.5.1 software (Thermo 171 

Scientific, Brisbane, QLD, Australia) was employed for data processing.   172 

 173 

2.6 Determination of total phenolic content and DPPH free radical scavenging activity 174 



 

The TPC and DPPH free radical scavenging activity were employed to determine the antioxidant 175 

activity of Kakadu plum fruit extract (obtained from section 2.4). For TPC, Folin-Ciocalteu assay was 176 

applied followed the procedure previously reported (18). Gallic acid standard was used to equivalently 177 

quantify the TPC. Results are expressed as g of gallic acid equivalent per 100 g sample on dry weight 178 

basis (g GAE/100 g DW).  179 

DPPH radical scavenging assay was conducted according to the method previously described (18). 180 

Ascorbic acid standard was used to equivalent quantify DPPH scavenging capacity of Kakadu plum 181 

fruit extract. Results are expressed as g of ascorbic acid equivalent per 100 g sample on dry weight 182 

basis (g AAE/100 g DW).  183 

 184 

2.7 Analysis of sugar components 185 

Extraction and analysis of individual soluble sugars in Kakadu plum fruit samples were conducted 186 

followed the method previously reported by Hong et al. (2021) (19), with minor modifications. Briefly, 187 

about 0.5 g of samples (in triplicate) were homogenized with aqueous methanol (62%, v/v) using a 188 

vortex mixer, followed by incubation in a shaking water bath at 50 ºC for 30 min (LSB18, Grant 189 

Instruments, Amsterdam, Netherlands). The supernatant was collected after centrifuging (3900 rpm, 190 

10 min, 25 °C) and the pellet was re-extracted with 62% MeOH for another 2 times. The supernatants 191 

were combined, filtered through 0.2 μm hydrophilic PTFE syringe filter membrane into HPLC vials. 192 

A Shimadzu Nexera X2 UHPLC system coupled with a Shimadzu MS8045 triple quadrupole mass 193 

spectrometer (Shimadzu, Kyoto, Japan) was employed for sugar analysis. The multiple reaction 194 

monitoring (MRM) scanned at negative mode was applied for identification and quantification of 195 

targeted soluble sugars, including fructose (m/z 179.2  113.1), glucose (m/z 179.2  89.0), and 196 

sucrose (m/z 341.2  179.2). Compound separation was performed in a Waters UPLC BEH Amide 197 

column (100 × 2.1 mm i.d., 1.7 um; Waters, Dublin, Ireland) maintained at 40 °C, with mobile phase 198 

A (80% acetonitrile containing 0.1% NH4OH) and mobile phase B (0.1% NH4OH). The gradient 199 

program for mobile phase B at a flow rate of 0.2 mL/min was as follows: 0-1 min, 0% B; 1-7 min, 0-200 

40% B; and recondition to the initial condition for 5 min before the next injection. A mix standard 201 

solution including glucose, fructose, and sucrose dissolved in Milli-Q water was prepared for 202 

establishment of external standard calibration curves for quantification of the soluble sugars detected 203 

in the fruit extract. The concentration of sugars is expressed as g per 100 g sample on dry weight basis.  204 



 

 205 

2.8 Statistical analysis 206 

Data were calculated and present as the mean and standard error (SE). A general linear model (GLM) 207 

procedure was applied to perform the analysis of variance (ANOVA) between the fruit samples 208 

collected at different fruit maturity stages, followed by Tukey’s multiple comparison post hoc tests 209 

using Minitab 17® for Windows (Minitab Inc., State College, PA, USA).  A p value of ≤0.05 was used 210 

to determine significant differences. A Pearson’s correlation coefficient test was also applied to test 211 

the correlation between antioxidant activity and bioactive compounds studied. A principal component 212 

analysis (PCA), including 20 measured variables with 6 replications and full-crossed validation, was 213 

performed to visualize the variability in the dataset, using GraphPad Prism software ver. 9.3 (GraphPad 214 

Software, San Diego, CA, USA).  215 

 216 

3 Results and Discussion 217 

3.1 Changes in hydrolysable tannins and phenolic acids in Kakadu plum fruits with the 218 

advance of fruit maturity 219 

Figures 2 and 3 show representative mass spectrum and MS2 fragmentations of 13 individual 220 

hydrolysable tannins and phenolic acids detected in Kakadu plum fruit extract. The detected and 221 

identified compounds included gallic acid, ellagic acid, corilagin, 3,4,6-tri-O-galloyl-S-glucose, 222 

castalagin, geraniin, chebulagic acid, chebulinic acid, punicalalgin and its isomer, elaeocarpusin, 223 

chebulic acid, and helioscopin B. Identification of the detected compounds was based on matching the 224 

mass features and the MS2 characteristic fragment ions with that of the commercial standards included 225 

in the UHLPC-HRAM-MS/MS analysis (section 2.1) and those reported in literature (15, 20, 21). The 226 

results of the present study were consistent with previous studies reported the presence of the 227 

corresponding compounds in Kakadu plum fruit (3, 15, 22) as well as in other Terminalia species (23, 228 

24). The results showed that corilagin has the highest concentration among the studied compounds, 229 

ranging from approximately 1600 to 1800 mg/100g DW, followed by 3,4,6-tri-O-galloyl-S-glucose 230 

(1045.7 – 1380 mg/100g DW), ellagic acid (647.9 – 730.1 mg/100g DW), geraniin (111 – 363 mg/100g 231 

DW), elaeocarpusin (216.1 – 244.2 mg/100g DW), chebulagic acid (143.1 – 246.3 mg/100g DW), and 232 

punicalagin and its isomer (145.1 – 172.4 mg/100g DW). All other compounds studied were present at 233 



 

levels below 100 mg/100g DW (Figure 4). The present study also confirms previous findings that 234 

corilagin is one of the major tannin compounds in Kakadu plum fruit (3, 15).  235 

Figure 4 clearly shows two opposite trends in the biosynthesis of hydrolysable tannins and phenolic 236 

acids during the fruit growth. A steady decrease was observed in the concentrations of chebulagic acid, 237 

geraniin, chebulinic acid, castalagin, gallic acid and punicalagin with the advance of fruit maturity. In 238 

contrast, the levels of elaeocarpusin, helioscopin B, corilagin, 3,4,6-tri-O-galloyl-S-glucose and ellagic 239 

acid were slightly increased from immature stage S1 to S3, and then decreased from S3 to the fully 240 

mature stage S4. Similarly, in pomegranate, as the fruit matures, the level of hydrolysable tannins in 241 

aril juice declines along with gallic acid and ellagic acid concentrations (25). In addition, several 242 

studies have shown a relatively higher level of hydrolysable tannins at the early maturity stage of 243 

several tannin-rich fruits such as java plum (Syzygium Cumini Lam.), carob (Ceratonia Siliqua L.) and 244 

different persimmon (Diospyros kaki Thunb.) cultivars (26-28).  245 

The biosynthesis of the individual hydrolysable tannins and phenolic acids during Kakadu plum fruit 246 

development was not significantly different (p > 0.05), but the total (sum) levels of all the studied 247 

compounds measured at the fully mature stage S4 were significantly lower than those measured at the 248 

immature stages (S1 and S2) (Figure 4).  This suggests that hydrolyzed tannins in Kakadu plum fruit 249 

decreased significantly as the fruit ripens. A decreasing trend in the total ellagic acid content (after acid 250 

hydrolysis of ellagitannins) during the ripening process of wild-harvested Kakadu plum fruits was 251 

recently reported (14, 17). The reduction in hydrolysable tannins, which is associated with the fruit 252 

maturation process, could be attributed to the polymerization of tannin compounds that can potentially 253 

bind to other macromolecules such as proteins, polysaccharides, and fibers to form the complex 254 

structures (29). According to previous research, this could have limited the extractability of tannin 255 

compounds (30). Furthermore, it has been reported that plants produce tannins as secondary 256 

metabolites to protect the plants against virus and microbe attacks during fruit development (31). The 257 

plant defense mechanism has been reported to contribute to the decrease in the content of bioactive 258 

compounds (e.g., persin, epicatechin and catechin) with fruit maturation as reported previously in New 259 

Zealand-grown ‘Hass’ avocado fruit (32).  260 

 261 

3.2 An increase in total soluble solid content and titratable acidity during fruit development 262 



 

Table 1 shows the results of total soluble solid content (TSS), pH values, titratable acidity (TA) of 263 

Kakadu plum fruits harvested at different stages of maturity. TSS increased from 2.0% during the 264 

immature stage (S1) to 4.1% at the mature stage (S4), whereas TA increased rapidly from 2.8% (S1) 265 

to 4.8% when the fruit matured (S4). Furthermore, pH, that is inversely correlated with TA, showed a 266 

significant decrease (p ≤0.05) at S4. TSS and TA did not differ significantly among the maturity stages, 267 

possibly due to a large variation among individual trees due to wild harvesting. The increase in TSS 268 

was probably derived from the accumulation of sugars during the fruit development (discussed later in 269 

section 3.3) as reported previously (33, 34). The higher TA content in the ripe fruit could be attributed 270 

to the accumulation of the exceptional amount of ascorbic acid in Kakadu plum fruits (up to 20% DW) 271 

at the full-maturity stage (12, 14). The observed increasing trend in TA is in contrast with the 272 

decreasing trend reported for other common domestical fruits such as mango (cv. Cogshall) (35) and 273 

pomegranate (Punica granatum L.) (36).    274 

 275 

3.3 Sugar accumulation with the advance of fruit maturity  276 

The changes in the amount of main sugar components (glucose, fructose, and sucrose) and total sugar 277 

content during fruit growth are present in Figure 5. Fructose was found as a major sugar component 278 

(2.0 – 4.1 g/100g DW), followed by glucose (1.7 – 2.8 g/100g DW), and sucrose (0.7 – 2.8 g/100g 279 

DW). The gradual accumulation of sugars during fruit maturation led to an increase in total sugar 280 

content from 4.9 to 9.7 g/100g DW from immature to fully mature stage, and consequence the observed 281 

increase in TSS (previous section 3.2). However, like TA and TSS results, no significant difference 282 

was observed among the four maturity stages. The low levels of glucose, fructose, and sucrose in the 283 

immature fruits could be due to their rapid usage by the cells. The early stages of fruit development 284 

require sugars to provide energy and intermediates needed for cell division and growth (37). Fruit 285 

sugars and total sugars tended to increase at late stages of development probably due to starch 286 

breakdown and continuous accumulation of sugars (37); particularly fructose, which increased the total 287 

concentration of soluble sugars, and sweetness, to a maximum level at maturity. Recently, changes in 288 

the degree of fruit fullness is considered as maturity index for harvesting Kakadu plum fruits (17). 289 

Therefore, the obtained results in this study on the increase of sugar content during fruit ripening may 290 

be considered as a secondary fruit maturity index, which together with the fruit fullness can facilitate 291 

the development of a standard harvest protocol for this wild-harvested fruit.  292 



 

The sugar content observed in the present study was higher than that was previously reported in Kakadu 293 

plum (2.3 g/100g DW) (16) and other Terminalia species, including Terminalia citrina at 2.6 g/100g 294 

DW (38) and Terminalia chebula (2.3 g/100g DW, (39)) which could be due to the effects of wild 295 

harvest practice depending on multiple environmental factors (14). The large variation in total sugars 296 

have been reported among the individual Kakadu plum trees that were harvested at the same location 297 

in Northern Territory (16). Individual fruits may exhibit significant variations in their external and 298 

internal qualities depending on their location in a tree canopy (40). The differences observed between 299 

the same species could be attributed due to the effect of location, sunshine hours, photosynthetically 300 

active radiation (40).    301 

 302 

3.4 Changes in antioxidant capacity during the fruit growth 303 

Figure 6 shows DPPH free radical scavenging activity and TPC of Kakadu plum fruit harvested at 304 

different maturity stages. DPPH scavenging activity varied from 51.4 to 55 g AAE/100 g DW during 305 

maturation, with S2 exhibiting slightly higher DPPH scavenging activity than the other maturity 306 

stages, although no statistical difference (p > 0.05; Fig. 6A). Similarly, there was no significant (p > 307 

0.05) difference in TPC values among the studied maturity stages, which was ca. 15 g GAE/100 g 308 

DW (Figure 6B). The obtained results are in agreement with the reported TPC values of forty-five 309 

accessions of Kakadu plum fruits ranging from 12.2 to 50.5 g GAE/100 g DW (16). The results 310 

suggested that fruit maturity is unlikely affecting the antioxidant capacity of wild-harvested Kakadu 311 

plum fruits as the biosynthesis of plant secondary metabolites such as phenolics is considerably 312 

depended on numerous environmental factors including sunshine hours, soil condition, temperature, 313 

air quality and water availability (41-44).  314 

To obtain a better understanding on the relationship between antioxidant capacity and the main 315 

bioactive compounds of Kakadu plum fruits, a Pearson’s correlation coefficient test was conducted 316 

(Table S2). A positive correlation (r = 0.653, p < 0.01) between DPPH scavenging capacity and TPC 317 

was observed. In addition, TPC positively correlated with most of the studied hydrolysable tannins, 318 

including 3,4,6-tri-O-galloyl-S-glucose (r = 0.55, p < 0.01), chebulinic acid (r = 0.51, p < 0.05), 319 

elaeocarpusin (r = 0.62, p < 0.01) and helioscopin B (r = 0.55, p < 0.01); except for castalagin (r = -320 

0.41, p < 0.05) and punicalagin (r = -0.39, p > 0.05), which were present in the samples at relatively 321 

low amounts (Figure 4). Furthermore, there was a positive correlation between DPPH scavenging 322 



 

capacity and chebulinic acid, elaeocarpusin and helioscopin B (r = 0.44, 0.51, and 0.45, respectively; 323 

p < 0.01). The results suggested that phenolic compounds including hydrolysable tannins could 324 

contribute to the antioxidant capacity of Kakadu plum fruit, which are consistent with previous research 325 

in Kakadu plum (16) as well as other Terminalia species (15, 18, 45). 326 

 327 

3.6 Principal components analysis (PCA) indicates the effect of fruit maturity and high 328 

variability between the individual trees 329 

PCA was applied to visualize the effects of fruit maturity on the changes of bioactive compounds, 330 

sugars, antioxidant capacity and other fruit quality parameters. Generally, the PCA scores plot (Figure 331 

7A), explaining 61.22% of the total variability (PC1 44.13% and PC2 17.09%) in the dataset, 332 

demonstrates a clear separation between the studied trees along the PC1. As can be seen in Figure 7A, 333 

trees 1, 3, and 5 were grouped together, while trees 2, 4, and 6 clustered in another group. The PC2, 334 

however, divides the samples into two distinguished groups according to fruit maturity levels, 335 

including the immature group (S1 and S2) and the mature one (S3 and S4). The PCA results highlighted 336 

the higher variability in the dataset influenced by variations among the studied trees. This confirms the 337 

considerable effect of wild harvest on the quality of Kakadu plum fruit.  338 

PCA loadings plot (Figure 7B) reveals the extent of the contribution of variables measured to the 339 

variations in the dataset. In PC1, hydrolysable tannin compounds that found at high concentrations 340 

such as helioscopin B (r = 0.9), 3,4,6-Tri-O-galloyl-S-glucose (r = 0.92), elaeocarpusin (r = 0.88), 341 

chebulinic acid (r = 0.69) and corilagin (r = 0.77), together with TPC (r = 0.73), glucose (r = -0.77), 342 

fructose (r = -0.8), and TA (r = 0.74) contributed to the separation among the trees. In contrast, 343 

punicalagin (r = 0.6), chebulinic acid (r = 0.61), chebulic acid (r = 0.55), geraniin (r = 0.72), total sugars 344 

(r = -0.46), sucrose (r = -0.52) and TSS (r = -0.710) were mainly responsible for the differences between 345 

the fruit maturity stages observed along the PC2. Furthermore, the PCA loadings plot showed that 346 

hydrolysable tannins and antioxidant capacity positively corelated with the immature fruit samples (S1, 347 

S2), whereas sugar components, TA and TSS were positively correlated with the mature fruits (S3, 348 

S4). The obtained results highlight an opposite trend in the dataset that as the fruit matures, more sugars 349 

and acids are accumulated, and more hydrolysable tannins are reduced.  350 

 351 



 

4. Conclusions 352 

The obtained results provide a better understanding of the relationship between the fruit maturity and 353 

the accumulation of different bioactive compounds and the associated bioactivities during Kakadu 354 

plum fruit growth. This can assist the Australian Indigenous enterprises as well as the food and other 355 

industries in selecting the appropriate maturity stages to harvest Kakadu plum fruit for further 356 

development  for functional food ingredients, pharmaceutical and/or nutraceutical products. Generally, 357 

the results showed that fruit maturity plays an important role in determining the quality of Kakadu 358 

plum fruit at harvest. TSS, TA and sugars increased during the fruit development, whereas phenolic 359 

compounds including major hydrolysable tannins exhibited a decreasing trend in the result as fruit 360 

ripens. A positive correlation between antioxidant capacity and hydrolysable tannins was observed, 361 

suggesting that tannins might mainly contribute to the bioactivity of Kakadu plum fruit. PCA results 362 

enabled us to differentiate between the immature and mature fruit samples and highlighted the high 363 

variability in the dataset, suggesting the considerable influence of wild harvest condition. Further 364 

studies using a larger sample size from different locations and harvest seasons/years are required to 365 

substantiate the current results.  366 
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List of Figures 501 
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Figure 1. illustrates changes in the degree of fruit fullness with an increase in fruit maturity 503 
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Figure 2. Representative ion chromatograms of 13 main hydrolysable tannins and phenolic acids in 507 

Kakadu plum fruit using a HRAM orbitrap mass spectrometer.  508 
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Figure 3. Molecular structures and mass features of the studied compounds using a HRAM orbitrap 514 
mass spectrometer. 515 
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 519 

Figure 4. Changes in the concentrations of the studied bioactive compounds in Kakadu plum fruit 520 

harvested at different maturity stages. Data presents mean ± standard error (SE), n = 6. S1-4 denotes 521 

different fruit maturity stages classified from immature stage (S1) to fully-mature stage (S4). 522 

Different letters indicate the significant differences at p ≤ 0.05.  523 
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 524 

Figure 5. Individual sugar components and total (sum) sugars of Kakadu plum fruit harvested at 525 

different maturity stages. Results are mean ± standard error (SE), n = 6. S1-4 denotes the different 526 

maturity stages from immature (S1) to mature (S4). Different letters indicate the significant 527 

differences at p ≤ 0.05.  528 
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 531 

Figure 6. (A) DPPH free radical scavenging activity and (B) total phenolic content of Kakadu plum 532 

fruit at different maturity stages. Data are mean ± SE (n = 6). DPPH scavenging activity and TPC are 533 

expressed as ascorbic acid equivalent (g AAE/100 g DW) and gallic acid equivalent per 100 g dry 534 

sample (g GAE/100 g DW), respectively. Different letters indicate the significant differences at p ≤ 535 

0.05.  536 
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 544 

 545 

Figure 7. (A) PCA scores plot and (B) loadings plot.  546 

T1-T6, Trees; S1-S4, maturity stages; TPC, Total phenolic content; DPPH, antioxidant capacity; TA, 547 

titratable acidity; TSS, total soluble solid content.  548 
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 550 

Table 1. Total soluble solid, titratable acidity, pH value of Kakadu plum fruit at different maturity stages. 551 

Maturity stage TSS (%) TA (%) pH 

S1 2.0 ± 0.1 a 2.8 ± 0.8 a 4.03 ± 0.01 a 

S2 3.3 ± 0.1 a 3.6 ± 0.6 a 3.87 ± 0.01 ab 

S3 3.7 ± 0.1 a 4.5 ± 0.8 a 3.82 ± 0.01 ab 

S4 4.1 ± 0.1 a 4.8 ± 0.2 a 3.80 ± 0.01 b 

Results present mean ± SE, n = 6. S1-4 denotes the different maturity stages from immature (S1) to 552 

mature (S4). Different letters indicate the significant differences at p ≤ 0.05. 553 



  

 

Supplementary Materials 554 

Table S1. Mass spectrometric data operated in negative mode of targeted hydrolysable tannins and phenolic acids present in Kakadu plum 555 

fruit extract at different maturity stages. 556 

Compounds Molecular 
formula 

Retention 
time (min) 

[M-H]- Collision 
energy (eV) 

Target transition ion 
for quantification 

Transition ions for 
confirmation 

Gallic acid C7H6O5 2.88 169.0142 25 168.9886 125.0233 

Castalagin C41H22O18 6.25 933.0639 25 933.0649 631.0581, 425.0155 
300.9995 

Punicalagin and its isomer C48H28O30 7.0 
8.25 

1083.0592 25 600.9902 1083.0607, 
781.0540 
300.9995 

Chebulic acid C14H12O11 9.58 355.0306 25 175.0394 355.0382, 168.9886 

Corilagin C27H22O18 9.77 633.0733 25 633.0740 463.0524, 300.9994 

3,4,6-Tri-O-galloyl-S-glucose C27H24O18 10.46 635.0889 30 635.0897 483.0786, 465.0677 
169.0135 

Geraniin C41H28O27 11.25 951.0745 25 300.9992 933.0647, 463.0522 

Chebulagic acid C41H30O27 11.46 953.0901 25 300.9991 953.0912, 463.0522 
275.0200 

Elaeocarpusin C47H34O32 11.64 1109.0960 25 300.9992 1109.0966, 
935.0801 
463.0522 

Helioscopin B C47H36O32 12.27 1111.1116 25 300.9992 1111.1112, 
463.0524 
275.0202 

Chebulinic acid C41H32O27 12.60 955.1058 25 275.0201 955.1065, 785.0853 
465.0676 

Ellagic acid C14H6O8 12.43 300.9989 35 300.9992 257.0091 

 557 



Phytochemicals and antioxidant capacity of T. ferdinandiana fruit at different maturity stages 

 25 

Table S2. Pearson’s correlation coefficients between ellagitannins and the values of TPC/DPPH of the wild-harvested Kakadu plum fruits. 558 
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PP

H
 

Castalagin 1.000              
Corilagin -0.610** 1.000             

3,4,6-Tri-O- 
galloyl-S-
glucose 

-0.506* 0.836** 1.000            

Punicalagin 0.691** -0.410 -
0.531** 1.000           

Gallic acid 0.162 0.044 0.037 0.183 1.000          
Ellagic acid 0.324 -0.192 -0.174 0.358 0.226 1.000         

Chebulagic acid -0.279 0.594** 0.461* 0.190 -0.019 -0.035 1.000        
Chebulinic acid -0.246 0.557** 0.748** -0.084 0.120 0.084 0.624** 1.000       
Elaeocarpusin -0.359 0.752** 0.822** -0.461* 0.303 0.104 0.293 0.680** 1.000      
Chebulic acid -0.620** 0.281 0.132 -0.338 -0.498* -0.319 0.027 -0.109 -0.140 1.000     

Helioscopin B -0.509* 0.738** 0.892** -
0.601** 0.190 -0.043 0.168 0.633** 0.874** 0.038 1.000    

Geraniin -0.022 0.199 0.137 0.449* -0.145 -0.045 0.882** 0.475* -0.118 -0.021 -0.175 1.000   
TPC -0.414* 0.391 0.554** -0.389 0.120 0.188 0.229 0.506* 0.616** -0.034 0.554** -0.015 1.000  

DPPH -0.201 0.338 0.380 -0.240 0.200 0.347 0.142 0.441* 0.505* -0.048 0.451* -0.040 0.653** 1.000 
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